Occupational exposures to endocrine disrupting chemicals and cancer risk

Vikki Ho, PhD Associate Professor, University of Montreal Co-Scientific Director of the CARTaGENE Study

Canadian Partnership for Tomorrow's Health

Partenariat canadien pour la santé de demain

Endocrine-disrupting chemicals (EDCs)

"alters function(s) of the endocrine system and consequently causes adverse health effects" (IPCS, 2002)

Sources of exposure:

- Food
- Environment
- Personal care products
- Workplace

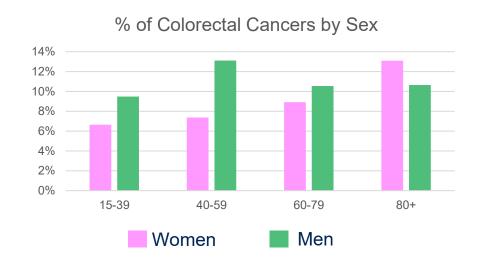
Exposure in some workplaces occurs at much higher levels

Hormone-dependent cancers

 Hormones play essential roles in the development and progression of many cancers

Breast cancer

Most common cancer in women:

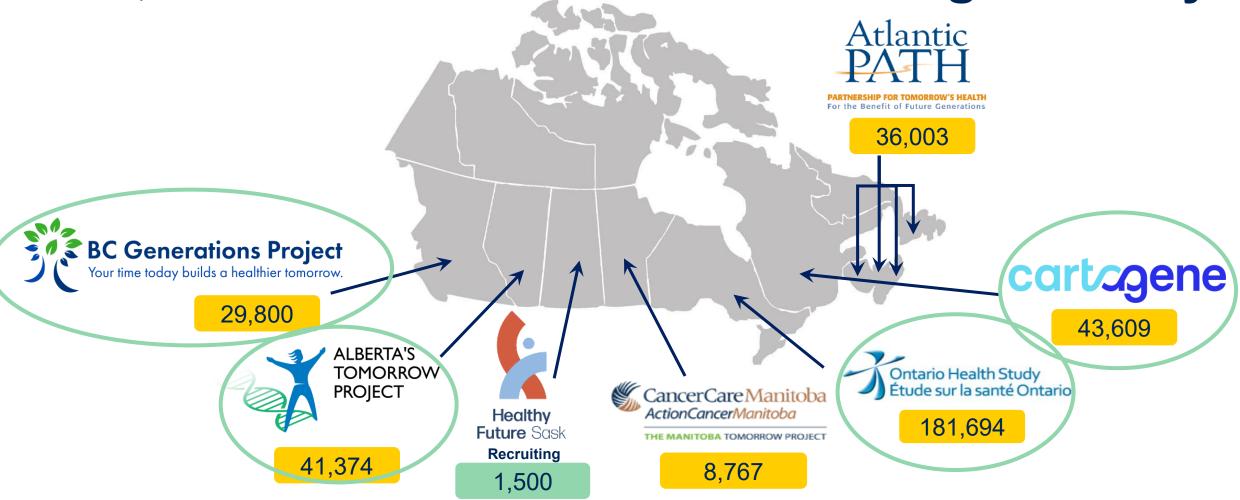


Prostate cancer

Most common cancer in men:

Colorectal cancer

Study objective & hypothesis


To investigate whether occupational exposure to EDCs is associated with the risk of breast cancer, prostate cancer and colorectal cancer

Sex differences

330,000 Canadians are followed longitudinally

Methods Overview

Eligibility criteria

- o 30-74 years old
- Resident of one of the collaborating provinces
- Be able to complete the questionnaire (English or French)

Data collection

Questionnaires (longest-held job)

Linkage to provincial cancer registries

Overview of occupational exposure assessment approaches

	Method	Strengths	Weaknesses
Expert assessment	Experts assign participants' occupational exposures	Considered as the gold standard	Long and costly; quality depends on the experts and available data
Job exposure matrix (JEM)	Fixed set of rules to associate a list of exposures to any occupational code	Cheap and quick	Dependent on the quality of available data, only provide average estimate of exposure

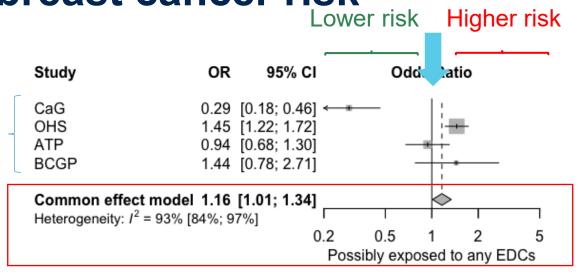
Occupational Exposure to 17 EDCs

Canadian Job Exposure Matrix (CANJEM)

- Unexposed
- Possibly exposed
- Exposed
- Aluminum
- Arsenic
- Polychlorinated biphenyls (PCBs)
- Biphenol A (BPA)

- Cadmium
- Carbon disulfide
- Copper
- Ethylene glycol
- Lead

1. Any


2. Mode of action

- Estrogenic
- Anti-estrogenic
- Anti-androgenic
- Mercury
- Perchloroethylene
- Phenol
- Phthalates
- Styrene

- o Toluene
- Trichloroethylene
- Xylene

Occupational exposure to any of our 17 selected EDCs and breast cancer risk

Study	OR	95% CI	Odds	Ratio	
CaG OHS ATP BCGP	1.03 [0 0.90 [0	0.51; 2.03] 0.75; 1.41] 0.51; 1.61] 0.73; 5.79]			→
Common effect in Heterogeneity: I ² =		0. 81; 1.34] 0.2	0.5	1 2	 5
			Exposed to	any EDCs	,

Occupational exposure to EDCs by mode of action and breast cancer risk

OR > 1.00 ~ Higher Risk

	Any of the 17 EDCs	Estrogenic EDCs	Anti- estrogenic EDCs	Anti- androgenic EDCs
Unexposed	ref (1.00)	ref (1.00)	ref (1.00)	ref (1.00)
Possibly exposed	1.16	1.27	1.24	1.21
	(1.01-1.34)	(1.14-1.43)	(1.10-1.65)	(1.07-1.37)
Exposed	1.05	1.93	0.98	0.86
	(0.82-1.34)	(0.86-4.30)	(0.75-1.27)	(0.66-1.13)

Occupational exposure to any of our 17 selected EDCs and prostate cancer risk

Study	OR	95	5% CI	Od	lds Ra	tio	
CaG OHS ATP BCGP	1.43 0.60	[0.35; [1.10; [0.33; [0.27;	1.85] 1.05]			-	
Common effect mod Heterogeneity: I ² = 779	d el 1.09 % [36%; 9	[0.88 ; 1%]	0.2	0.5 ossibly exp	1 posed t	2 to any E	5 EDCs

Study	OR	95% CI	Odds	Ratio	
CaG OHS ATP BCGP	1.12 [0 0.79 [0	0.33; 1.16] 0.80; 1.57] 0.39; 1.55] 0.18; 2.59] ←	-		
Common effect Heterogeneity: I ²		. 72; 1.22]	0.5 Exposed to	1 2 any EDCs	5

Occupational exposure to EDCs by mode of action and prostate cancer risk

OR > 1.00 ~ Higher Risk

	Any of the 17 EDCs	Estrogenic EDCs	Anti- estrogenic EDCs	Anti- androgenic EDCs
Unexposed	ref (1.00)	ref (1.00)	ref (1.00)	ref (1.00)
Possibly exposed	1.09	1.17	0.99	1.02
	(0.88-1.35)	(1.01-1.36)	(0.83-1.19)	(0.84-1.24)
Exposed	0.94	1.15	0.95	0.92
	(0.72-1.22)	(1.08-1.23)	(0.73-1.22)	(0.70-1.19)

Any of the 17 Estrogenic estrogenic androgenic EDCs EDCs EDCs

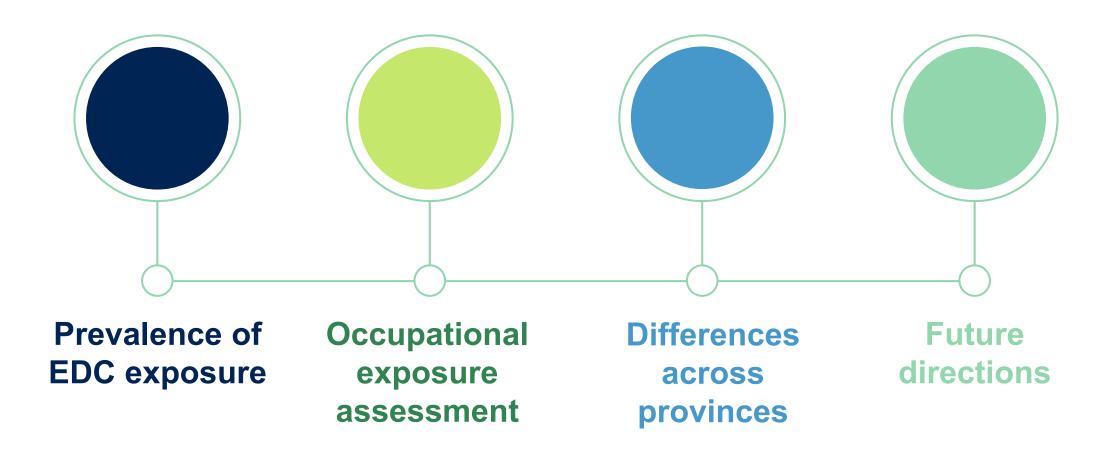
Occupational exposure to EDCs and colorectal cancer risk

Specific EDCs of Interest

Breast and Prostate cancers

Metals

- Aluminum
- Arsenic
- Lead
- Mercury
- Cadmium
- Copper


Organic liquids, vapours (solvents)

- Ethylene glycol
- Perchloroethylene
- o Phenol
- Toluene
- Trichloroethylene
- Xylene

Manufacturing of plastics, etc

o BPA

Discussion

Thank you!

Thank you to CanPath participants across the seven regional cohorts who generously donate their time, information and biological samples. CanPath is a success because of the participant's ongoing commitment.

Co-Authors

Laura Pelland-St-Pierre, Jack Siemiatycki, Trevor Dummer, Will D. King, Anita Koushik, Jérôme Lavoué, Marie-Hélène Mayrand, Harriet Richardson, Marie-Pierre Sylvestre, Martie van Tongeren, Marc-André Verner, Vikki Ho

Operating and Infrastructure Grants

- Canadian Institutes for Health Research (CIHR)
- CIHR Sex and Gender Science Chair in Cancer Research

Scholarship

- Fonds de recherche du Québec Santé (FRQS)
- Institut de Recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)

