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Introduction
Breast cancer epidemiology

Source: cancer.ca



Introduction
Breast cancer epidemiology

Source: cancerstats.ca

Five-year stage-specific breast cancer survival, ages 15-99, Canada (excluding Quebec)
2010-2017 period
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Source: ohcare.com

• Breast cancer survival remains poor for later stages, and survivors face long-term adverse effects
• Identifying patients at elevated risk allows for targeted intervention and enhanced screening



Introduction
Metabolomics

Source: Ussher et al (2016), JACC.

• Metabolomics is the study of low-molecular-
weight molecules (i.e., metabolites) in 
biological samples

• Metabolites provide a functional readout of 
genes and environment 

• Pre-diagnostic samples are key for risk 
prediction



Introduction
Study objectives
• Determine metabolomic signatures associated with breast cancer risk
• Utilize metabolites to predict breast cancer risk



Methods
Study design



Methods

• Cancer-free at baseline
• Diagnosis ascertained through cancer registries 
• 1:1 case-control matching 

• Cohort
• Age at blood collection 
• Year of blood collection (+/-2 years)
• Baseline menopause status



Methods

• Baseline questionnaire and measurements
• Demographics
• Family and reproductive history
• Lifestyle behaviors

• Untargeted metabolomics
• Blood samples collected at baseline
• Quadrupole time-of-flight mass spectrometry (Q-TOF-MS) 

by General Metabolics (Boston, MA)
• Compound annotations based on HMDB, ChEBI, and KEGG



Methods

• Assess breast cancer risk associated with each 
metabolite, adjusting for matching factors and 
confounding

• Breast cancer risk prediction using metabolomics 
data (ongoing)

• Subgroup analyses for postmenopausal (72%), ductal 
carcinoma (75%), and hormone receptor-positive 
cases (78%) (ongoing)



Results
Study characteristics
• Cases are more likely to have first-degree relatives with breast cancer
• Most health and lifestyle characteristics are similar between study groups



Results
Metabolomics profiling
• 854 metabolites were detected in ≥ 50% of study samples
• 87% compounds have multiple possible annotations
• Cohort effect present, required normalization

Before normalization After normalization

PCA of metabolite grouping patterns before and after normalization



Results
Metabolic associations with breast cancer

• Significant associations were 
found for 24 metabolites

• 13 associated with lower risk
• 11 associated with higher risk



Results
Risk prediction (preliminary)

Cross-validated AUC, sensitivity, and specificity, for breast cancer predictions using significant metabolites after 
correction for multiple testing at FDR = 0.1 and 0.2, and all metabolites.

AUC on 10% holdout test set:
Lasso(all): 0.575 PLS-Da(all): 0.576 RF(0.1): 0.517



Results
Subgroup analyses (preliminary)

Metabolite Full Postmenopausal Ductal ER+/PR+
1Monomethyl sulfate 0.63 (0.51-0.78) 0.57 (0.44-0.75) 0.65 (0.50-0.83) -
2Lauroyl diethanolamide 0.67 (0.56-0.80) 0.61 (0.49-0.76) 0.65 (0.51-0.81) 0.72 (0.58-0.88)
3[Ion 184] 0.77 (0.64-0.90) 0.68 (0.54-0.84) - 0.67 (0.53-0.85) 
4N-Benzoyl-D-arginine-4-nitroanilide 0.81 (0.72-0.91) 0.80 (0.69-0.92) - 0.75 (0.63-0.89)
5[ion 724] 0.81 (0.72-0.92) 0.75 (0.64-0.88) 0.79 (0.68-0.91) -
6Arachidonate 0.82 (0.73-0.92) 0.77 (0.66-0.88) - -
7[Ion 147] 0.83 (0.74-0.93) - 0.81 (0.71-0.93) -
8 Isopropylmaleate 0.83 (0.74-0.94) 0.77 (0.67-0.89) - -
9Methyl 10-hydroxytetradecanoate 0.83 (0.74-0.94) - 0.81 (0.71-0.93) -

10[Ion 200] 0.84 (0.74-0.94) - 0.78 (0.68-0.90) -
11[Ion 123] 0.84 (0.74-0.94) 0.8 (0.69-0.93) - -
1211-Oxo-androsterone glucuronide 0.84 (0.75-0.94) - - 0.76 (0.65-0.89)
13p-Coumaroyl aspartate 1.20 (1.07-1.34) 1.23 (1.08-1.41) 1.26 (1.10-1.44) -
14[Ion 1282] 1.21 (1.08-1.36) - 1.35 (1.18-1.56) -
15Phophatidylethanolamine(38:7) 1.21 (1.08-1.36) - 1.33 (1.16-1.52) -
16Fusicoccin H 1.21 (1.08-1.37) - 1.29 (1.13-1.49) -
17PE(18:2) 1.21 (1.08-1.36) 1.23 (1.08-1.42) - -
18[Ion 1624] 1.22 (1.09-1.37) - 1.34 (1.18-1.54) -

• Differential expressions of metabolites were mostly consistent in full and subgroup analyses
• Associations were observed for new metabolites, but with high variation due to reduced sample size



Discussion
Next steps & future directions
Next steps
• Literature review to assess biological significance of metabolites identified in 

regression analysis
• Predictive modeling for subgroups

Future directions
• Larger-scale studies with diverse participant samples
• Incorporate other methods for breast cancer prediction
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